

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

SYNTHESIS AND SPECTROSCOPIC CHARACTERIZATION OF WATER SOLUBLE PERYLENE TETRACARBOXYLIC DIIMIDE DERIVATIVES

Huriye Icil^a; Duygu Uzun^a; Elif Arslan^a

^a Department of Chemistry, Faculty of Arts and Science, Eastern Mediterranean University, Mersin 10, Turkey

Online publication date: 31 October 2001

To cite this Article Icil, Huriye , Uzun, Duygu and Arslan, Elif(2001) 'SYNTHESIS AND SPECTROSCOPIC CHARACTERIZATION OF WATER SOLUBLE PERYLENE TETRACARBOXYLIC DIIMIDE DERIVATIVES', Spectroscopy Letters, 34: 5, 605 — 614

To link to this Article: DOI: 10.1081/SL-100106874

URL: <http://dx.doi.org/10.1081/SL-100106874>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

**SYNTHESIS AND SPECTROSCOPIC
CHARACTERIZATION OF WATER
SOLUBLE PERYLENE
TETRACARBOXYLIC DIIMIDE
DERIVATIVES**

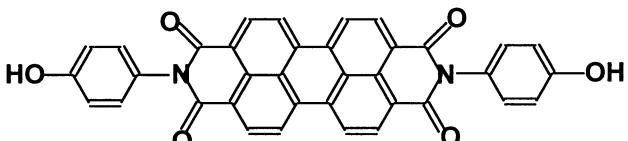
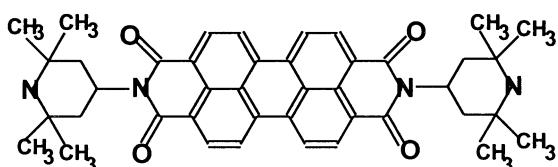
Huriye Icil,* Duygu Uzun, and Elif Arslan

Department of Chemistry, Faculty of Arts and Science,
Eastern Mediterranean University, Famagusta,
N. Cyprus, Mersin 10, Turkey

ABSTRACT

Two new perylene dye, N,N'-bis(4-hydroxyphenyl)-3,4,9,10-perylenebis (dicarboximide) (**1**) and N,N'-bis-(3,3,5,5-tetramethyl piperidine)-3,4,9,10-perylenebis (dicarboximide) (**2**) have been synthesized. They are both soluble in water. A limited number of water soluble perylene dyes published in literature have been obtained in pure grade only with column chromatography. For this reason they are not useful for certain applications. The N,N'-bis-(3,3,5,5-tetramethyl piperidine)-3,4,9,10-perylenebis (dicarboximide) derivative is obtained in high purity with high yield. Solubility of dyes, (**1**)

*Corresponding author.



and (**2**) were measured as 4.4×10^{-5} g/ml and 5.1×10^{-3} g/ml respectively in distilled water at pH: 7. The solubility of N·N'-bis-(3,3,5,5-tetramethyl piperidine)-3,4,9,10-perylenebis (dicarboximide) was increased with decreasing pH. The chemical and photochemical stabilities of **1**, and **2** are very high. The fluorescence quantum yields of compounds are different (0.053 (**1**), 0.110 (**2**)). The report includes the electronic absorption and emission spectra, extinction coefficients and fluorescence quantum yields.

Key Words: Perylene dye; Water solubility; Photosensitizer; Electron acceptor

INTRODUCTION

N,N'-Dialkyl-(diaryl) imides of perylenetetracarboxylic acids are important dyes or pigments of high lightfastness and thermal as well as photochemical stability. The high fluorescent quantum yield, up to 100% is a very important property of Perylenediimides. They are used in plastics and dye industry, in optical data storage, as laser dyes, in fluorescence solar collector^{1,2}. Some Perylene derivatives show photoconductivity in the solid state^{3,4}. They are ideal standards for measuring fluorescence quantum yields^{5,6} in 500–650 nm region. They are applicable as fluorescent labelling⁷, as bathochromically shifted fluorescence⁸. The nonsymmetrical perylene dyes generally show a tendency to aggregate^{9,10}. A black polyimide, Perylene-3,4,9,10-tetracarboxylic acid-bis-(N,N'-dodecylpolyimide) may be an excellent camouflage paint due to its ir reflectivity and higher thermal stability comparing to perylene diimides¹¹. Despite their great advantages, perylene diimides suffer from their limited processability due to poor solubility in organic solvents. Introducing long-chain secondary alkyl groups (swallow-tail substituents) into the dyes^{12,13} enhances solubility. Heinz Langhals has synthesized firstly the water soluble perylene diimides¹⁴. Limited number of water-soluble perylene diimides reported, are obtained analytically pure grade with chromatographic methods¹⁵. It is therefore of prime interest to obtain an easily prepared water-soluble perylene dye. The perylene derivatives (see Fig. 1) N,N'bis(4-Hydroxyphenyl)-3,4,9,10-Perylenebis(dicarboximide) (**1**) and N,N'bis(3,3,5,5-tetramethyl piperidine)-3,4,9,10-Perylenebis(dicarboximide) (**2**) are all soluble in water.

1**2**

Figure 1. Structural formulae of N,N'-bis(4-Hydroxyphenyl)-3,4,9,10-Perylenebis(dicarboximide) (**1**) and N,N'-bis(3,3,5,5-tetramethyl piperidine)-3,4,9,10-Perylenebis(dicarboximide) (**2**).

EXPERIMENTAL

Measurements

^1H and ^{13}C NMR spectra were obtained on a Bruker AC 270. UV-VIS absorption spectra were recorded on a Varian Cary 100 spectrophotometer. The ir spectra were recorded with KBr pellets using a Bruker IFS 66 (FT-IR) spectrophotometer. Mass spectra were recorded on a Finnigan MAT 311A instrument. Emission spectra were recorded on a Spex fluorolog. Elemental analyses were obtained from Carlo Erba-1106 C, H, N analyzer. Chromatographic separations were done with flash chromatography.

Solvents and Reagents

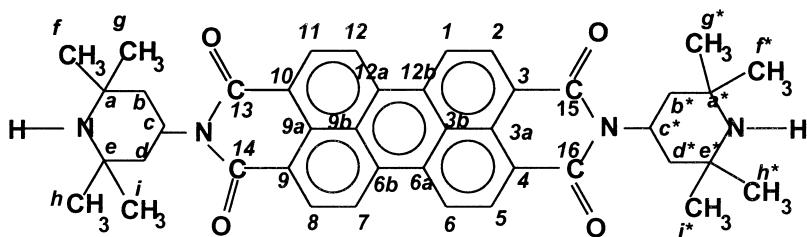
Perylene-3,4,9,10-tetracarboxylic dianhydride, pure grade, isoquinoline, 97%, m-Cresol, 98%, 4-aminophenol, 98%, and 4-amino-2,2,6,6-tetramethyl piperidine were obtained from Aldrich. All solvents used for column chromatography were distilled before use.

Synthesis

N,N'-bis(4-Hydroxyphenyl)-3,4,9,10-Perylenebis(dicarboximide) (**1**): A mixture of perylene-3,4,9,10-tetracarboxylic acid dianhydride (1 g,

2.55×10^{-3} mol), 4-aminophenol (1.2 g, 11×10^{-3}), m-cresol (40 ml) and isoquinoline (4 ml) was stirred at 80°C for 1 hour. Then the solution was heated at 120°C for 2 hours, the temperature was raised to 150°C and kept for 3 hours. The reaction was then completed by stirring at 200°C for another 10 hours. The warm solution was poured into 250 mL of acetone, and the precipitate was filtered out and dried at 100°C under vacuum. The crude product was treated with acetone in a Soxhlet apparatus for 24 hours, in order to remove unreacted 4-aminophenol and high boiling solvents, m-cresol and isoquinoline. The crude product is further purified by column separation (silica gel, chloroform, methanol, acetic acid 15:5:4), $R_F = 0.56$. 0.8 g (54.8%) black powder, m.p. greater than 400°C is obtained. The product could not be sublimed up to 400°C under -3 mbar pressure. It was dissolved completely in concentrated sulfuric acid with a navy-blue color. The pigment was insoluble in common NMR solvents; the spectrum, which was taken in d-pyridine, was not excellent due to the poor solubility. However it was consistent with the proposed structure.

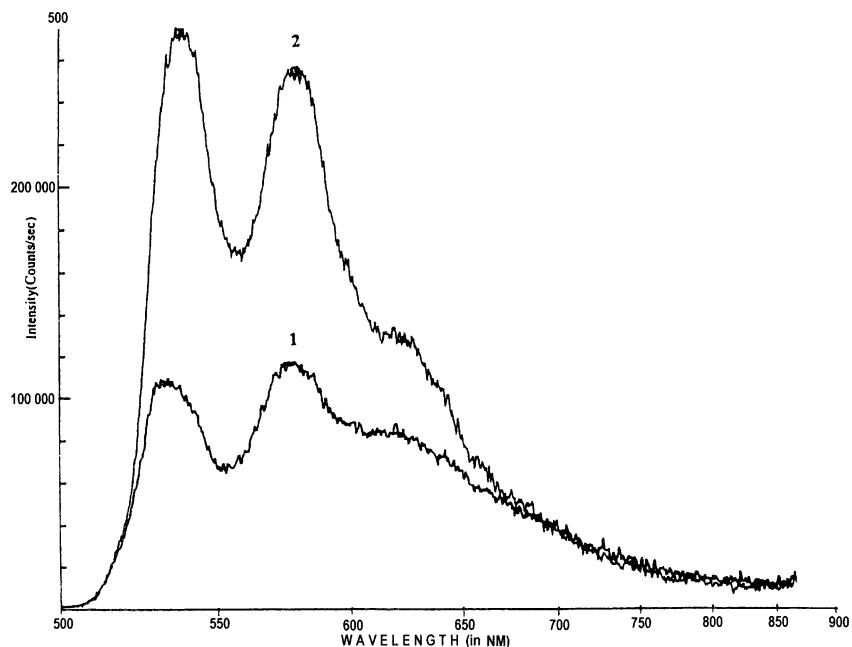
N,N'-bis(3,3,5,5-tetramethyl piperidine)-3,4,9,10 Perylenebis (dicarboximide) (2): A mixture of perylene-3,4,9,10-tetracarboxylic acid dianhydride (1 g, 2.55×10^{-3} mol), 4-amino-2,2,6,6-tetramethyl piperidine (5 g, 3.1996×10^{-2} mol), m-cresol (40 ml) and isoquinoline (4 ml) was stirred at 80°C for 1 hour. Then the solution was heated at 120°C for 2 hour, the temperature was raised to 160°C and kept for 2 hour. The reaction was then completed by stirring at 200°C for another 10 hour. The warm solution was poured into 250 ml of acetone, and the precipitate was filtered out and dried at 100°C under vacuum. The crude product was washed with ethanol in order to get rid of the unreacted amine and then treated for 1 hour with 10% NaOH in order to remove unreacted perylene dianhydride. In order to remove high boiling solvents, m-cresol and isoquinoline, the crude product was treated with ethanol in a Soxhlet apparatus for 24 hour. 1.5 g (90%) brown-red powder, m.p. greater than 400°C was obtained. The perylene dye showed solubility, in water (PH: 7); 5.1×10^{-3} g/ml, in ethanol; 0.8×10^{-3} g/ml, in water (PH:8.2); 4.4×10^{-3} g/ml. The product was dissolved completely in concentrated sulfuric acid with a violet-pink color.


Characterization

N,N'-bis(4-Hydroxyphenyl)-3,4,9,10 Perylenebis (dicarboximide) (1). Yield: 54.8%, color: black, m.p. $> 360^\circ\text{C}$, R_F (silica, chloroform/methanol/acetic acid 15:5:4): 0.56, IR: ν (KBr pellets)/ cm^{-1} 3432, 2931, 1707, 1639, 1559, 1415, 1339, 1270, 1124, 1021, 915, 809, 643 cm^{-1} . UV-VIS: λ_{max} (DMF)/nm ($\epsilon/\text{mol}^{-1} \text{ cm}^{-1}$) 454.00 (14430), 486.00 (28490), 522.20

(40240). Fluorescence: λ_{max} (DMF)/nm 533.91, 577.80, 620.82. $Q_f = 0.053$. MS: m/z: 574 (M^-), 503, 335, 153. ^1H NMR (250 MHz, pyridine-d₅): 8.7 (Ar-H). ^{13}C NMR (252 MHz, pyridine-d₅): δ : 150.4, 135.8, 123.9 (Ar-C). C₃₆H₁₈N₂O₆ : Calcd. C 75.26, H 3.16, N 4.88; found C 75.37, H 3.12, N 4.76.

N,N'bis(3,3,5,5-tetramethyl piperidine)-3,4,9,10 Perylenebis (dicarboximide) (2). Yield: 90%, color of the diimide: brown-red, m.p > 360 °C, R_f (silica, chloroform/acetone/formic acid 10:10:2): 0.58. IR: ν (KBr pellets)/cm⁻¹ 3449, 2972, 1690, 1652, 1594.3, 1577.4, 1487.6, 1435.9, 1404.9, 1383.8, 1340.8, 1258, 1170.8, 1127, 810, 746, 674.5. UV-VIS: λ_{max} (DMF)/nm (ϵ /mol⁻¹ cm⁻¹) 458.5 (28950), 488 (67150), 524 (89550). Fluorescence: λ_{max} (DMF)/nm 537.62, 577.97, 622.04. Q_f : 0.110 MS: m/z 669 (M+1), 652, 622, C₄₂H₄₂N₄O₄: Calcd C 75.65, H 6.35, N 8.40; found C 75.36, H 6.22, N 8.23.


¹H NMR: δ_{H} (250 MHz, $\text{CCl}_3\text{D} + \text{C}_2\text{DF}_3\text{O}_2$, 5:3) 8.8221 (H*11*, H₈), 8.7894 (H₂, H₅), 8.7894 (H*12*, H₇), 8.7701 (H*1*, H₆), 5.8 (H_c, H_{c*}), 2.3119 (1H_b, 1H_d), 2.2954 (1H_{b*}, 1H_{d*}), 2.2868 (1H_b, 1H_d), 1.9835 (1H_{b*}, 1H_{d*}), 1.9304 (H-N), 1.7090 (H_f, H_h, H_{f*}, H_{h*}), 1.5330 (H_g, H_i, H_{g*}, H_{i*}). ¹³C NMR: δ_{C} (252 MHz, $\text{CCl}_3\text{D} + \text{C}_2\text{DF}_3\text{O}_2$, 5:3) 163.018 (c*15*), 162.324 (c*16*), 161.631 (c*13*), 160.938 (c*14*), 135.969 (c*3*, c*4*, c*9*, c*10*), 133.209 (c*2*, c*5*, c*11*, c*8*), 129.588 (c*3a*), 126.644 (c*9a*), 124.567 (c*1*, c*6*, c*12*, c*7*), 122.563 (c*9b*), 116.642 (c*3b*), 112.125 (c*6a*, c*6b*), 107.607 (c*12a*, c*12b*), 60.430 (ca*, ce*), 60.336 (ca, ce), 44.782 (cc, cc*), 37.141 (cb, cd, cb*, cd*), 30.595 (cf, cg, ch, ci), 24.339 (cf*, cg*, ch*, ci*).

RESULTS AND DISCUSSION

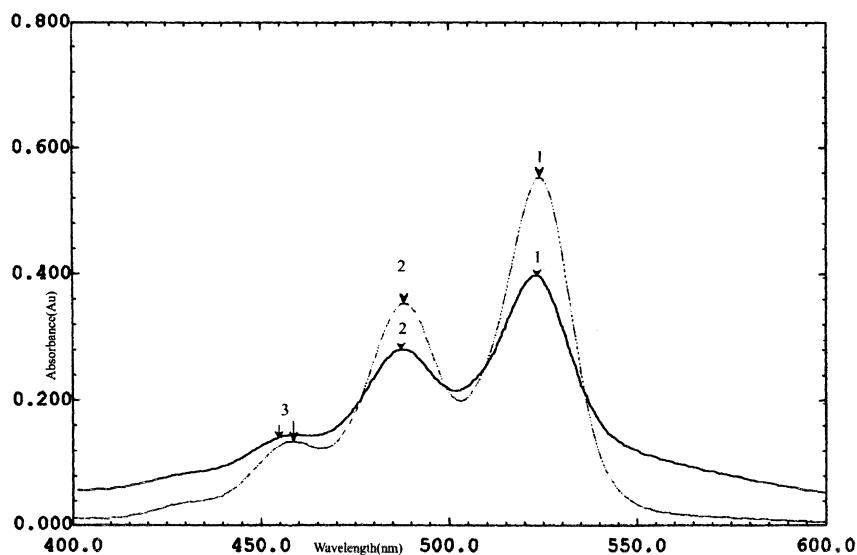
Electronic Spectra

The absorption spectra of both perylene dyes show the characteristic vibronic structure associated with the $\pi \rightarrow \pi^*$ transitions of perylene diimides between 450–524 nm (Fig. 2). A concentration dependent broad band at

Figure 2. UV-VIS absorption spectrum of **1** (—) and **2** (---) in N,N-dimethylformamide.

600 nm, probably due to aggregation in solution was observed on the UV spectrum of N,N'-bis(4-Hydroxyphenyl)-3,4,9,10 Perylenebis (dicarboximide) (**1**). The broad band was dissapeared after filtration of the solution with microfilter (SPR 25 0,2 μ m). The extinction coefficients (ϵ) obtained from the absorbance vs. concentration measurements in N,N-dimethylformamide are shown in Table 1. Small variation on extinction coefficients may be attributed to inductive effect of the p-hydroxy group in **1** and changes of the dihedral angle of the C-N bond which is expected to be larger in **2** due to steric hindrance.

The fluorescence spectra at the excitation wavelength of 485 nm of dye **1** and **2** are shown in Fig. 1. The emission spectrum of N,N'-bis(4-Hydroxyphenyl)-3,4,9,10 Perylenebis (dicarboximide) (**1**) shows three bands at 533.9, 577.8, and 620.8 nm from singlet excited states. The emission spectrum of N,N'-bis(3,3,5,5-tetramethyl piperidine)-3,4,9,10-Perylenebis (dicarboximide) (**2**) shows similar bands at 537.6, 577.9, and 622 nm. No excimer emission was observed in fluorescence spectra. Both dyes show weak fluorescence, possibly due to aggregation in solution. The fluorescence quantum


Table 1. Visible Absorption Maxima (λ_{\max}) and Extinction Coefficients (ϵ) of **1** and **2** Measured in N,N-dimethylformamide at Room Temperature

Compound	λ_{\max}/nm	$\epsilon/1\text{ mol}^{-1}\text{ cm}^{-1}$
1	454	14430
	486	28490
	522	40240
2	458	13380
	488	35340
	524	55390

yields of **1** and **2** were determined by using perylene 3,4,9,10-tetracarboxylic acid-bis-N,N'-dodecyl diimide as reference ($\phi_f=1.0$). The experiments with **1** and **2** give the quantum yields $\phi_f=0.054$ and $\phi_f=0.110$, respectively.

Infrared Spectra

The infrared spectrum of N,N'-bis(4-Hydroxyphenyl)-3,4,9,10 Perylenebis (dicarboximide) (**1**) shows O-H stretch at 3432 cm^{-1} , aromatic C-H

Figure 3. Fluorescence emission spectra of **1** and **2** in N,N-dimethylformamide.

stretch at 2931 cm^{-1} , C=O stretch at 1639 and 1559 cm^{-1} , out-of-plane C-H bend at 809 cm^{-1} , Out-of-plane O-H bend at 643 cm^{-1} . The infrared spectrum of N,N'-bis(3,3,5,5-tetramethyl piperidine)-3,4,9,10-Perylenebis (dicarboximide) (**2**) shows N-H stretch at 3449 cm^{-1} , C-H stretch at 2971 cm^{-1} , imide C=O stretch at 1690, 1651, 1595, and 1577 cm^{-1} , out-of-plane C-H bend at 745 and 809 cm^{-1} .

Stability

The chemical and photochemical stabilities of **1**, and **2** are very high. Stock solutions are stable when exposed to light months at room temperature. The quantum yields in nitrogen saturated solvents and in normal solvent are equal. Dye **2** is easily prepared. It is used as an electron acceptor in a photochemical reaction which the results of these investigation will be reported elsewhere. The acetonitrile, water solution is used as solvent. The electron transfer reaction, which is taken in flatbed reactors, is completed in one month at room temperature under sunlight at nitrogen atmosphere. After the addition of distilled water into mixture all the dye has passed into water layer. We obtained the dye **2** with water extraction easily. No decomposition is detected on the sample. So it is reusable.

Water Solubility

Solubility of dye **1** and **2** were measured as $4.4 \times 10^{-5}\text{ g/ml}$ and $5.0 \times 10^{-3}\text{ g/ml}$ respectively in distilled water at pH: 7. The solubility of **2** was increased with decreasing pH.

CONCLUSIONS

Two different perylene derivatives, N,N'-bis(4-Hydroxyphenyl)-3,4,9,10 Perylenebis (dicarboximide) and N,N'-bis(3,3,5,5-tetramethyl piperidine)-3,4,9,10-Perylenebis (dicarboximide) have been synthesized. Both of them dissolve in water and show high thermal and photochemical stability. N,N'-bis(3,3,5,5-tetramethyl piperidine)-3,4,9,10-Perylenebis (dicarboximide) is much more soluble comparing to N,N'-bis(4-Hydroxyphenyl)-3,4,9,10 Perylenebis (dicarboximide). N,N'-bis(4-Hydroxyphenyl)-3,4,9,10 Perylenebis (dicarboximide) can be obtained in pure grade with column chromatography in small amounts. It is not convenient for many applications for this reason. N,N'-bis(3,3,5,5-tetramethyl piperidine)-3,4,9,10-Perylenebis (dicarboximide) has been obtained via a short and

efficient synthetic pathway in large amounts without column chromatography. With water extractions the dye can be separated easily from organic solutions, it is also reusable. It does not decompose after one-month irradiation under sunlight. Thermally it is also very stable. With this unique set of properties N,N'-bis(3,3,5,5-tetramethyl piperidine)-3,4,9,10-Perylenebis (dicarboximide) is offered as photosensitizers for photoenergy transfer and electron transfer reactions occurred in water. It is a very convenient standard for fluorescence quantum yield measurements in water. Also it is potential candidates for fluorescence labelling and immunofluorescence technique in biochemical analyses.

ACKNOWLEDGMENTS

This work was supported by the Scientific and Technical Research Council of Turkey (TUBITAK, Grant TBAG 1707). We thank to Prof. Dr. Martin Demuth at Max-Planck-Institut für Strahlenchemie for providing facilities of spectral analyses.

REFERENCES

1. Reisfeld, R.; Seybold, G. Stable Solid-State Lasers in the Visible. *J. Luminescence* **1991**, *48*, 898–900.
2. Schott, H.; Cunow, D.V.; Langhals, H. Labelling of Liposomes with Intercalating Perylene Fluorescent Dyes. *Biochimica et Biophysica acta* **1992**, *1110*, 151–157.
3. Horowitz, G.; Kouki, F.; Spearman, P.; Fichou, D.; Nogues, C.; Pan, X.; Garnier, F. Evidence for n-Type Conduction in a Perylene Tetracarboxylic Diimide Derivative. *Adv. Mater.* **1996**, *8*, 242–244.
4. Langhals, H.; Jona, W. Intense Dyes through Chromophore-Chromophore Interactions: Bi- and Trichromophoric Perylene-3,4,9,10-bis(dicarboximide)s. *Angew. Chem. Int. Ed.* **1998**, *37*, 952–955.
5. Langhals, H. *Chem. Abstr.* (DE-3703 513), **1988**, *109*, P212376w.
6. İçli, S.; İcil, H. A Thermal and Photostable Reference Probe for Q_f Measurements: Chloroform Soluble Perylene 3,4,9,10-Tetracarboxylic Acid-bis-N,N'-Dodecyl Diimide. *Spectrosc. Lett.* **1996**, *29* (7), 1253–1257.
7. İcil, H.; Uzun, D.; Paşaoğulları, N. Synthesis of a New Thermal and Photostable Reference Probe for Q_f Measurement in Aqua: Water Soluble N,N'-Bis-(2-Hydroxy-4-benzoic acid)-3,4,9,10-Perylenebis(dicarboximide). *Spectrosc. Lett.* **1998**, *31* (3), 667–671.

8. Langhals, H.; Gold, J. Chiral Bifluorophoric Perylene Dyes with Unusually High CD Effects-A Simple Model for the Photosynthesis Reaction Center. *Liebigs. Ann., Recueil.* **1997**, 1151–1153.
9. Lee, S.K.; Zu, Y.; Herrmann, A.; Geerts, Y.; Müllen, K.; Bard, A.J. Electrochemistry, Spectroscopy and Electrogenerated Chemiluminescence of Perylene, Terrylene, and Quaterrylene Diimides in Aprotic Solution. *J. Am. Chem. Soc.* **1999**, *121*, 3513–3520.
10. İcil, H.; İcli, S. “IR Reflectivity of Perylene 3,4,9,10-Tetracarboxylic Acid-bis-N,N'-dodecyl Polyimide and Its Use for Camouflage”, Turkish Patent (submitted), 1996.
11. Langhals, H.; Karolin, J.; Johansson, L.B-A. Spectroscopic Properties of New and Convenient Standards for Measuring Fluorescence Quantum Yields. *J. Chem. Soc., Faraday Trans.* **1998**, *94*, 2919–2922.
12. Rodriguez-Llorente, S.; Aroca, R.; Duff, J. Spectroscopic Characterization of Thin Solid Films of a Bis(chlorobenzylimidoperyleneimido) Octane Derivatives. *J. Mater. Chem.* **1998**, *8* (3), 629–632.
13. Müller, G.R.J.; Meiners, C.; Enkelmann, V.; Geerts, Y.; Müllen, K. Liquid Crystalline Perylene-3,4-dicarboximide Derivatives with High Thermal and Photochemical Stability. *J. Mater. Chem.* **1998**, *8* (1), 61–64.
14. Langhals, H.; Jona, W.; Einsiedl, F.; Wohnlich, S. Self-Dispersion: Spontaneous Formation of Colloidal Dyes in Water. *Adv. Mater.* **1998**, *10*, 1022–1024.
15. Langhals, H.; Jona, W. The Synthesis of Perylenebisimide Monocarboxylic Acids. *Eur. J. Org. Chem.* **1998**, 847–851.

Received April 30, 2000

Accepted July 1, 2001

Request Permission or Order Reprints Instantly!

Interested in copying and sharing this article? In most cases, U.S. Copyright Law requires that you get permission from the article's rightsholder before using copyrighted content.

All information and materials found in this article, including but not limited to text, trademarks, patents, logos, graphics and images (the "Materials"), are the copyrighted works and other forms of intellectual property of Marcel Dekker, Inc., or its licensors. All rights not expressly granted are reserved.

Get permission to lawfully reproduce and distribute the Materials or order reprints quickly and painlessly. Simply click on the "Request Permission/Reprints Here" link below and follow the instructions. Visit the [U.S. Copyright Office](#) for information on Fair Use limitations of U.S. copyright law. Please refer to The Association of American Publishers' (AAP) website for guidelines on [Fair Use in the Classroom](#).

The Materials are for your personal use only and cannot be reformatted, reposted, resold or distributed by electronic means or otherwise without permission from Marcel Dekker, Inc. Marcel Dekker, Inc. grants you the limited right to display the Materials only on your personal computer or personal wireless device, and to copy and download single copies of such Materials provided that any copyright, trademark or other notice appearing on such Materials is also retained by, displayed, copied or downloaded as part of the Materials and is not removed or obscured, and provided you do not edit, modify, alter or enhance the Materials. Please refer to our [Website User Agreement](#) for more details.

Order now!

Reprints of this article can also be ordered at
<http://www.dekker.com/servlet/product/DOI/101081SL100106874>